→ Полупроводниковые приборы презентация. Полупроводниковые приборы

Полупроводниковые приборы презентация. Полупроводниковые приборы


Стремительное развитие и расширение областей применения электронных устройств обусловлено совершенствованием элементной базы, основу которой составляют полупроводниковые приборы Полупроводниковые материалы по своему удельному сопротивлению (ρ=10-6 ÷ 1010 Ом м) занимают промежуточное место между проводниками и диэлектриками. Стремительное развитие и расширение областей применения электронных устройств обусловлено совершенствованием элементной базы, основу которой составляют полупроводниковые приборы Полупроводниковые материалы по своему удельному сопротивлению (ρ=10-6 ÷ 1010 Ом м) занимают промежуточное место между проводниками и диэлектриками.


Для изготовления электронных приборов используют твердые полупроводники, имеющие кристаллическое строение. Для изготовления электронных приборов используют твердые полупроводники, имеющие кристаллическое строение. Полупроводниковыми приборами называются приборы, действие которых основано на использовании свойств полупроводниковых материалов.


Полупроводниковые диоды Это полупроводниковый прибор с одним p-n-переходом и двумя выводами, работа которого основана на свойствах p-n - перехода. Основным свойством p-n – перехода является односторонняя проводимость – ток протекает только в одну сторону. Условно-графическое обозначение (УГО) диода имеет форму стрелки, которая и указывает направление протекания тока через прибор. Конструктивно диод состоит из p-n-перехода, заключенного в корпус (за исключением микромодульных бескорпусных) и двух выводов: от p-области – анод, от n-области – катод. Т.е. диод – это полупроводниковый прибор, пропускающий ток только в одном направлении – от анода к катоду. Зависимость тока через прибор от приложенного напряжения называется вольт-амперной характеристикой (ВАХ) прибора I=f(U).


Транзисторы Транзистор - это полупроводниковый прибор, предназначенный для усиления, генерирования и преобразования электрических сигналов, а также коммутации электрических цепей. Отличительной особенностью транзистора является способность усиливать напряжение и ток - действующие на входе транзистора напряжения и токи приводят к появлению на его выходе напряжений и токов значительно большей величины. Свое название транзистор получил от сокращения двух английских слов tran(sfer) (re)sistor - управляемый резистор. Транзистор позволяет регулировать ток в цепи от нуля до максимального значения.


Классификация транзисторов: Классификация транзисторов: - по принципу действия: полевые (униполярные), биполярные, комбинированные. - по значению рассеиваемой мощности: малой, средней и большой. - по значению предельной частоты: низко-, средне-, высоко- и сверхвысокочастотные. - по значению рабочего напряжения: низко- и высоковольтные. - по функциональному назначению: универсальные, усилительные, ключевые и др. - по конструктивному исполнению: бескорпусные и в корпусном исполнении, с жесткими и гибкими выводами.


В зависимости от выполняемых функций транзисторы могут работать в трех режимах: В зависимости от выполняемых функций транзисторы могут работать в трех режимах: 1) Активный режим - используется для усиления электрических сигналов в аналоговых устройствах. Сопротивление транзистора изменяется от нуля до максимального значения - говорят транзистор «приоткрывается» или «подзакрывается». 2) Режим насыщения - сопротивление транзистора стремится к нулю. При этом транзистор эквивалентен замкнутому контакту реле. 3) Режим отсечки - транзистор закрыт и обладает высоким сопротивлением, т.е. он эквивалентен разомкнутому контакту реле. Режимы насыщения и отсечки используются в цифровых, импульсных и коммутационных схемах.


Индикатор Электрóнный индикáтор - это электронное показывающее устройство, предназначенное для визуального контроля за событиями, процессами и сигналами. Электронные индикаторы устанавливается в различное бытовое и промышленное оборудование для информирования человека об уровне или значении различных параметров, например, напряжения, тока, температуры, заряде батареи и т.д. Часто электронным индикатором ошибочно называют механический индикатор с электронной шкалой.

Работа может использоваться для проведения уроков и докладов по предмету "Физика"

Наши готовые презентации по физике делают сложные темы урока простыми,интересными и легкоусвояемыми. Большинство опытов, изучаемых на уроках физики, невозможно провести в обычных школьных условиях, показать такие опыты можно с помощью презентаций по физике.В данном разделе сайта Вы можете скачать готовые презентации по физике для 7,8,9,10,11 класса, а также презентации-лекции и презентации-семинары по физике для студентов.

При использовании полупроводниковых приборов в электронных устройствах для унификации их обозначения и стандартизации параметров используются системы условных обозначений. Эта система классифицирует полупроводниковые приборы по их назначению, основным физическим и электрическим параметрам, конструктивно-технологическим свойствам, виду полупроводниковых материалов. Система условных обозначений отечественных полупроводниковых приборов базируется на государственных и отраслевых стандартах. Первый ГОСТ на систему обозначений полупроводниковых приборов ГОСТ 10862-64 был введен в 1964 году. Затем по мере возникновения новых классификационных групп приборов был изменен на ГОСТ 10862-72, а затем на отраслевой стандарт ОСТ 11.336.038-77 и ОСТ 11.336.919-81 соответственно в 1972, 1977, 1981 годах. При этой модификации основные элементы цифробуквенного кода системы условных обозначений сохранились. Эта система обозначений логически строена и позволяет наращивать по мере дальнейшего развития элементной базы. Основные термины, определения и буквенные обозначения основных и справочных параметров полупроводниковых приборов приведены в следующих гостах: 25529-82 – Диоды полупроводниковые. Термины, определения и буквенные обозначения параметров; 19095-73 – Транзисторы полевые. Термины, определения и буквенные обозначения параметров; 20003-74 – Транзисторы биполярные. Термины, определения и буквенные обозначения параметров; 20332-84 – Тиристоры. Термины, определения и буквенные обозначения параметров.


Интегральные датчики температуры на БТ 2 Большинство полупроводниковых датчиков температуры используют соотношение между напряжением база-эмиттер и током коллектора. Базовая схема измерения температуры Схемы ячеек датчиков температуры Ячейка Брокау Ячейка токового датчика температуры


Интегральные датчики температуры на БТ 3 Датчики температуры с токовым выходом TO-92Корпус от -25 до 105T A,°C 0,298I CC,мА от 4 до 30V CC,В Различные схемы включения токовых ДТ для определения: а среднего значения температуры в трех точках пространства, б точки с минимальной температурой из трех контролируемых, в разности температур в двух точках


Интегральные датчики температуры на БТ 4 Датчики температуры с выходом по напряжению Vcc, В2, Чувствительность, мВ/ С 10 Рабочий диапазон температур, С AD AD Vcc, В Чувствительность, мВ/ С 10 Рабочий диапазон температур, С Icc, мА0,12 LM45 LM135/235/335 Vcc, В2, Чувствительность, мВ/ К 10 Рабочий диапазон температур, С LM LM LM Простейшие схемы применения для измерения: а – минимальной из трех температур, б – среднего значения температуры для трех точек, в – разности температур Типовые схемы включения: а – без калибровки, б – с калибровкой


Интегральные датчики температуры на БТ 5 Схемы простого термостата Логометрический ДТ: а – структурная схема, б – схема преобразования температуры в код, не зависящий от напряжения питания Логометрические ДТ Системы измерения называются логометрическими, если конечный результат преобразования не зависит от температуры. Выходной сигнал логометрических датчиков зависит от напряжения питания. Vcc, В2,7...3,6 Чувствительность, мВ/ С 28 Рабочий диапазон температур, С Icc, мА0,5 КорпусSOIC-8, TO92 Удобно сопрягать датчик с 12-разрядным АЦП AD7896, который использует питающее напряжение в качестве опорного


Датчики температуры с цифровым выходом 6 Микросхемы MAX6576/MAX6577 это дешёвые, слаботочные температурные датчики с однопроводным выходом. Микросхема MAX6576 преобразует окружающую температуру в меандр с периодом пропорциональным абсолютной температуре (°K). Микросхема MAX6577 преобразует окружающую температуру в меандр с частотой пропорциональной абсолютной температуре. Микросхема MAX6576 обеспечивает точность ±3°C при +25°C, ±4.5°C при +85°C и ±5°C при +125°C. Микросхема MAX6577 обеспечивает точность ±3°C при +25°C, ±3.5°C при +85°C и ±4.5°C при +125°C. Наименование Интерфейс Точность (±°C) Диапазон питающего напряжения (В)Рабочий диапазон (°C)Корпус MAX6576 MAX6577 период - темп. частота - темп. 3 от 2.7 до 5.5 от –40 до /SOT2 3 Оба устройства отличаются однопроводным выходом, который минимизирует число выводов, необходимых для взаимодействия с микропроцессором. Диапазон периода/частоты выходного меандра может быть выбран подключением двух выводов выбора времени (TS0, TS1) к VDD (питание) или GND (общий). Микросхемы MAX6576/MAX6577 выпускаются в компактных 6-контактных SOT23 корпусах.


Датчики температуры с ШИМ 7 TMP03/TMP04 - полупроводниковая ИС, длительность прямоугольного сигнала на выходе которой прямо пропорциональна ее температуре. Встроенный преобразователь температуры вырабатывает прямопропорциональное температуре напряжение, которое сравнивается с опорным напряжением, и результат сравнения подается на цифровой модулятор. Масштабный формат кодирования выходного последовательного цифрового сигнала позволяет избежать ошибок, возникающих в других устройствах ввиду нестабильности частоты синхросигнала. Приборы имеют типовую погрешность измерения ±1.5°C в диапазоне от -25°C до +100°C и превосходную линейность характеристики преобразования. Цифровой выход TMP04 является ТТЛ/КМОП совместимым, что позволяет подключать его к большинству микроконтроллеров напрямую. Выход с открытым коллектором прибора TMP03 имеет максимальный втекающий ток 5 мА. TMP03 и TMP04 имеют рабочий диапазон напряжения питания от 4.5 до 7 В. Работая от 5 В источника питания при ненагруженном выходе приборы потребляют менее 1.3 мА. TMP03/TMP04 определены для работы в температурном диапазоне от -40°C до +100°C и выпускаются в ТО-92, SO-8 и TSSOP-8 корпусах. С пониженной точностью приборы способны измерять температуру до 150°C. Формат выходного сигнала ДТ


Датчики температуры с последовательным цифровым интерфейсом 8 Эта микросхема помимо температурного датчика на основе биполярного транзистора включает также сигма- дельта АЦП, интерфейс которого совместим с интерфейсами SPI и MICROWIRE. Тринадцатиразрядный АЦП обес­печивает разрешение °С в диапазоне температур от -55 до +150°С. Датчик допускает перевод в режим молчания с пониженным энергопотреблением (shutdown mode), при котором потребляемый ток уменьшается до 10 мкА. Датчик изготавливается в корпусе SO-8 и в миниатюрном 5-выводном micro SMD-кopпyсe. Датчики температуры AD7816/17/18 Датчики температуры DS18B20


Температурные компараторы 9 Прибор имеет выход с открытым коллектором, который переключается при достижении температурой заданного пользователем значения. ADT05 имеет гистерезис, равный приблизительно 4°С, что обеспечивает быстрый цикл включения/выключения. ADT05 разработан для работы с однополярным напряжением питания от + 2,7 до +7,0 В, что облегчает их применение как в батарейных устройствах, так и в индустриальных контрольных системах. Номинал резистора, задающего температуру срабатывания, определяется выражением: R SET = 39 МОМ°С/(T SET (°C) + 281,6°C) - 90,3 к Ом. ТМР01 – двухканальный контролер, который также вырабатывает выходное напряжение, пропорциональное абсолютной температуре (выход 5). Помимо этого он вырабатывает сигналы управления на одном или обоих выходах, когда температура оказывается за пределами заданного температурного диапазона. Верхняя и нижняя границы диапазона и гистерезис компараторов каждого из этих каналов задаются внешними сопротивлениями.

Материал презентации может быть использован, как ввовное занятие на уроках физики, информатики или электротехники для объяснения работы полупроводников. Рассмотрена классификация веществ по типу проводимости. Дается объяснение собственной и примесной проводимости. Объяснена работа p-n - перехода. Диод и его свойства. Кратко дается понятие о транзисторах.

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Презентация по теме: «Полупроводники» Преподаватель: Виноградова Л.О.

Классификация веществ по проводимости Собственная проводимость полупроводников Примесная проводимость полупроводников p – n переход и его свойства Полупроводниковый диод и его применение Транзисторы Электрический ток в различных средах Электрический ток в полупроводниках

Классификация веществ по проводимости Разные вещества имеют различные электрические свойства, однако по электрической проводимости их можно разделить на 3 основные группы: Электрические свойства веществ Проводники Полупроводники Диэлектрики Хорошо проводят электрический ток К ним относятся металлы, электролиты, плазма … Наиболее используемые проводники – Au , Ag, Cu, Al, Fe … Практически не проводят электрический ток К ним относятся пластмассы, резина, стекло, фарфор, сухое дерево, бумага … Занимают по проводимости промежуточное положение между проводниками и диэлектриками Si, Ge , Se, In, As

Классификация веществ по проводимости Вспомним, что проводимость веществ обусловлена наличием в них свободных заряженных частиц Например, в металлах это свободные электроны - - - - - - - - - - К содержанию

Собственная проводимость полупроводников Рассмотрим проводимость полупроводников на основе кремния Si Si Si Si Si Si - - - - - - - - Кремний – 4 валентный химический элемент. Каждый атом имеет во внешнем электронном слое по 4 электрона, которые используются для образования парноэлектронных (ковалентных) связей с 4 соседними атомами При обычных условиях (невысоких температурах) в полупроводниках отсутствуют свободные заряженные частицы, поэтому полупроводник не проводит электрический ток

Собственная проводимость полупроводников Рассмотрим изменения в полупроводнике при увеличении температуры Si Si Si Si Si - - - - - - + свободный электрон дырка + + При увеличении температуры энергия электронов увеличивается и некоторые из них покидают связи, становясь свободными электронами. На их месте остаются некомпенсированные электрические заряды (виртуальные заряженные частицы), называемые дырками Под воздействием электрического поля электроны и дырки начинают упорядоченное (встречное) движение, образуя электрический ток - -

Собственная проводимость полупроводников Таким образом, электрический ток в полупроводниках представляет собой упорядоченное движение свободных электронов и положительных виртуальных частиц - дырок При увеличении температуры растет число свободных носителей заряда, проводимость полупроводников растет, сопротивление уменьшается R (Ом) t (0 C) R 0 металл полупроводник К содержанию

Собственная проводимость полупроводников явно недостаточна для технического применения полупроводников Поэтому для увеличение проводимости в чистые полупроводники внедряют примеси (легируют) , которые бывают донорные и акцепторные Донорные примеси Si Si As Si Si - - - - - - - При легировании 4 – валентного кремния Si 5 – валентным мышьяком As , один из 5 электронов мышьяка становится свободным Таким образом изменяя концентрацию мышьяка, можно в широких пределах изменять проводимость кремния Такой полупроводник называется полупроводником n – типа, основными носителями заряда являются электроны, а примесь мышьяка, дающая свободные электроны, называется донорной Примесная проводимость полупроводников - -

Примесная проводимость полупроводников Акцепторные примеси Если кремний легировать трехвалентным индием, то для образования связей с кремнием у индия не хватает одного электрона, т.е. образуется дырка Si Si In Si Si - - - - - + Изменяя концентрацию индия, можно в широких пределах изменять проводимость кремния, создавая полупроводник с заданными электрическими свойствами Такой полупроводник называется полупроводником p – типа, основными носителями заряда являются дырки, а примесь индия, дающая дырки, называется акцепторной - -

Примесная проводимость полупроводников Итак, существует 2 типа полупроводников, имеющих большое практическое применение: р - типа n - типа Основные носители заряда - дырки Основные носители заряда - электроны + - Помимо основных носителей в полупроводнике существует очень малое число неосновных носителей заряда (в полупроводнике p – типа это электроны, а в полупроводнике n – типа это дырки), количество которых растет при увеличении температуры К содержанию

p – n переход и его свойства Рассмотрим электрический контакт двух полупроводников p и n типа, называемый p – n переходом + _ 1. Прямое включение + + + + - - - - Ток через p – n переход осуществляется основными носителями заряда (дырки двигаются вправо, электроны – влево) Сопротивление перехода мало, ток велик. Такое включение называется прямым, в прямом направлении p – n переход хорошо проводит электрический ток р n

p – n переход и его свойства + _ 2. Обратное включение + + + + - - - - Основные носители заряда не проходят через p – n переход Сопротивление перехода велико, ток практически отсутствует Такое включение называется обратным, в обратном направлении p – n переход практически не проводит электрический ток р n Запирающий слой К содержанию

Полупроводниковый диод и его применение Полупроводниковый диод – это p – n переход, заключенный в корпус Обозначение полупроводникового диода на схемах Вольт – амперная характеристика полупроводникового диода (ВАХ) I (A) U (В) Основное свойство p – n перехода заключается в его односторонней проводимости

Полупроводниковый диод и его применение Применение полупроводниковых диодов Выпрямление переменного тока Детектирование электрических сигналов Стабилизация тока и напряжения Передача и прием сигналов Прочие применения

До диода После диода После конденсатора На нагрузке Полупроводниковый диод и его применение Схема однополупериодного выпрямителя

Полупроводниковый диод и его применение Схема двухполупериодного выпрямителя (мостовая) вход выход + - ~

Транзисторы p-n-p канал p- типа n-p-n канал n- типа Условные сокращения: Э - эмиттер, К - коллектор, Б – база. Транзистор был первым полупроводниковым устройством, способным выполнять такие функции вакуумного триода (состоящего из анода, катода и сетки), как усиление и модуляция. Транзисторы вытеснили электронные лампы и произвели революцию в электронной промышленности.


Слайд 2

Стремительное развитие и расширение областей применения электронных устройств обусловлено совершенствованием элементной базы, основу которой составляют полупроводниковые приборыПолупроводниковые материалы по своему удельному сопротивлению (ρ=10-6 ÷ 1010 Ом.м) занимают промежуточное место между проводниками и диэлектриками.

Слайд 3

Основными материалами для производства полупроводниковых приборов являются: кремний (Si), карбид кремния (SiС), соединения галлия и индия.

Слайд 4

Для изготовления электронных приборов используют твердые полупроводники, имеющие кристаллическое строение. Полупроводниковыми приборами называются приборы, действие которых основано на использовании свойств полупроводниковых материалов.

Слайд 5

Полупроводниковые диоды

Это полупроводниковый прибор с одним p-n-переходом и двумя выводами, работа которого основана на свойствах p-n - перехода. Основным свойством p-n - перехода является односторонняя проводимость - ток протекает только в одну сторону. Условно-графическое обозначение (УГО) диода имеет форму стрелки, которая и указывает направление протекания тока через прибор. Конструктивно диод состоит из p-n-перехода, заключенного в корпус (за исключением микромодульных бескорпусных) и двух выводов: от p-области - анод, от n-области - катод. Т.е. диод - это полупроводниковый прибор, пропускающий ток только в одном направлении - от анода к катоду. Зависимость тока через прибор от приложенного напряжения называется вольт-амперной характеристикой (ВАХ) прибора I=f(U).

Слайд 6

Транзисторы

Транзистор - это полупроводниковый прибор, предназначенный для усиления, генерирования и преобразования электрических сигналов, а также коммутации электрических цепей. Отличительной особенностью транзистора является способность усиливать напряжение и ток - действующие на входе транзистора напряжения и токи приводят к появлению на его выходе напряжений и токов значительно большей величины. Свое название транзистор получил от сокращения двух английских слов tran(sfer) (re)sistor - управляемый резистор. Транзистор позволяет регулировать ток в цепи от нуля до максимального значения.

Слайд 7

Классификация транзисторов: - по принципу действия: полевые (униполярные), биполярные, комбинированные. - по значению рассеиваемой мощности: малой, средней и большой. - по значению предельной частоты: низко-, средне-, высоко- и сверхвысокочастотные. - по значению рабочего напряжения: низко- и высоковольтные. - по функциональному назначению: универсальные, усилительные, ключевые и др. - по конструктивному исполнению: бескорпусные и в корпусном исполнении, с жесткими и гибкими выводами.

Слайд 8

В зависимости от выполняемых функций транзисторы могут работать в трех режимах: 1) Активный режим - используется для усиления электрических сигналов в аналоговых устройствах. Сопротивление транзистора изменяется от нуля до максимального значения - говорят транзистор «приоткрывается» или «подзакрывается». 2) Режим насыщения - сопротивление транзистора стремится к нулю. При этом транзистор эквивалентен замкнутому контакту реле. 3) Режим отсечки - транзистор закрыт и обладает высоким сопротивлением, т.е. он эквивалентен разомкнутому контакту реле. Режимы насыщения и отсечки используются в цифровых, импульсных и коммутационных схемах.

Слайд 9

Индикатор

Электрóнный индикáтор — это электронное показывающее устройство, предназначенное для визуального контроля за событиями, процессами и сигналами. Электронные индикаторы устанавливается в различное бытовое и промышленное оборудование для информирования человека об уровне или значении различных параметров, например, напряжения, тока, температуры, заряде батареи и т.д. Часто электронным индикатором ошибочно называют механический индикатор с электронной шкалой.

Посмотреть все слайды

 

 

Это интересно: