→ Как сделать из монитора осциллограф. Осциллограф из планшета своими руками

Как сделать из монитора осциллограф. Осциллограф из планшета своими руками

Основные параметры осциллографа
Параметр Значение
Тип цифровой
Исполнение приставка к ПК
Полоса пропускания, МГц 20
Основные параметры генератора
Параметр Значение
Исполнение приставка к ПК
Основные параметры частотомера (стандарта частоты, компаратора)
Параметр Значение
Назначение частотомер
Исполнение приставка к ПК
Максимальная частота, МГц 250.00

USB осциллограф PV6501 предназначен для создания рабочего места радиолюбителя, наладчика, разработчика на базе персонального компьютера или ноутбука. Кроме осциллографа приставка работает в режиме генератора и частотомера.

USB Осциллограф PV6501 предназначен для создания рабочего места радиолюбителя, наладчика, разработчика на базе персонального компьютера или ноутбука. Кроме осциллографа приставка работает...

Подробное описание

Характеристики

  • Высокая частота дискретизации. Позволяет достоверно отображать сигнал до 20 МГц.
  • Полное ощущение работы с обычным аналоговым осциллографом. Мгновенная реакция на действия пользователя. Быстрый набор и отображение отсчетов.
  • Интуитивно понятный интерфейс. Простое и логичное управление. Вам даже не придется читать инструкцию - для того, чтобы в первый раз начать работать с PV6501 достаточно одного взгляда на экран.
  • Встроенный генератор до 10 МГц. Удобно использовать для снятия АЧХ.
  • Точный частотомер. Отображаются 7 значащих цифр.
  • Удобная инсталляция. Программу можно разместить в любом месте, даже запускать с компакт диска. При установке не модернизируется системный реестр, в систему устанавливается только стандартный драйвер USB.
  • Гальваноотвязка. Ваш компьтер защищен от измеряемой схемы. Шумы от блока питания компьютера не будут мешать измерениям.
  • Габариты: 165 х 80 х 30 мм
  • Вес: 150 г

Комплектация

  • Осциллограф PV6501
  • CD-диск (содержит программу, драйвера и инструкцию).
  • Кабель USB-AB 1,8 м.

Возможности

  • Осциллограф
    • Маркерные измерения, авто измерения параметров сигнала, масштабирование сигнала (лупа времени), запись осциллограмм в файл (в графическом или текстовом виде).
    • Режим регистрации выбросов (глитчей) и подавление эффекта наложения спектров "Peak detect".
    • Режим открытого/закрытого входа. (Для корректных измерений с закрытым входом значение постоянной составляющей должно быть от -20 до +20 В.)
  • Синхронизация
    • Внутренняя и внешняя синхронизация.
    • По фронту/срезу входного сигнала.
    • Ждущая (запуск развертки при выполнении условия синхронизации). Автоматическая (запуск развертки производится автоматически независимо от условия синхронизации). Возможен однократный или многократный запуск развертки.
  • Генератор
    • Работа на основе прямого цифрового синтеза частоты (DDS).
    • Режим качания частоты синхронно с разверткой осциллографа (ГКЧ).
  • Электронно-счетный частотомер
    • Принцип действия основан на одновременном измерении частоты и периода сигнала на интервале времени 1 сек.

Технические характеристики

  • Осциллограф:
    • максимальная частота дискретизации 100 МГц
    • разрядность АЦП 8 бит
    • полоса пропускания усилителя вертикального отклонения 20 МГц
    • входное сопротивление 1 МОм
    • входная емкость 20 пФ
    • максимальное допустимое входное напряжение (сумма постоянной и переменной составляющих) 150 В
    • режим открытого/закрытого входа для корректных измерений с закрытым входом значение постоянной составляющей должно быть от -20 до +20 В.
    • объем памяти 8000 отсчетов
    • коэффициенты отклонения по вертикали 50 мВ/дел...2 В/дел. (6 калиброванных значений с шагом 1—2—5)
    • коэффициенты развертки по горизонтали 50 нс/дел...2 c/дел. (24 калиброванных значения с шагом 1—2—5). На развертках 100 мс/дел...2 с/дел. включается непрерывный циклический режим (без мертвой зоны) с непрерывной визуализацией.
    • входное сопротивление входа внешней синхронизации 1 МОм
    • входная емкость 20 пФ
    • уровень срабатывания по входу внешней синхронизации 1,3 В (триггер Шмитта с порогами 1,0 В и 1,6 В)
    • максимальное допустимое напряжение на входе внешней синхронизации (сумма постоянной и переменной составляющих) 150 В
  • Синхронизация:
    • настраиваемый уровень ±4 деления
    • настраиваемая длина предвыборки 0...9 делений
    • настраиваемый уровень шумоподавления при синхронизации (гистерезис) 0 дел...2 дел
    • настраиваемый номер фронта/среза вызывающий инхронизацию 1...255
  • Генератор:
    • диапазон генерируемых частот 0,1 Гц...10 МГц
    • частота дискретизации 100 МГц
    • разрядность ЦАП 9 бит
    • разрядность аккумулятора фазы 40 бит
    • шаг установки частоты 5 значащих разрядов (но не менее 0,1 Гц)
    • режим генератора импульсов с произвольной скважностью в диапазоне 10 нс...1 с
    • диапазон подстройки амплитуды 1 В...4 В (Значение от пика до пика: выходной сигнал генератора имеет постоянную составляющую = 1/2 значения от пика до пика.)
    • шаг подстройки амплитуды 8 мВ
    • выходное сопротивление 50 Ом
  • Электронно-счетный частотомер:
    • диапазон измеряемых частот со входа осциллографа 2 Гц...30 МГц, со входа внешней синхронизации до 250 МГц
    • чувствительность со входа осциллографа не менее 20 мВ,
    • со входа внешней синхронизации — триггер Шмитта с порогами 1,0 В и 1,6 В
    • при работе со входа осциллографа частотомер работает по уровню синхронизации, при этом возможна настройка уровня шумоподавления (гистерезис) 0 дел...2 дел., x — коэффициент отклонения по вертикали осциллографа
    • разрядность 7 значащих цифр

Условия эксплуатации

  • Максимальное напряжение на входе осциллографа и внешней синхронизации +-150 В. Температура окружающего воздуха +10..+30°С. Относительная влажность не более 75% при 20 °С.

Минимальные требования к компьютеру:

  • Pentium I — 166 Mhz, 64 RAM, Win 98, USB_1.1, 5 V, 500 mA.

Щупы для осцилографа - HP-9060

Производитель:

Для комментирования материалов с сайта и получения полного доступа к нашему форуму Вам необходимо зарегистрироваться .

  • Дело в том, что уж больно приятная и красивая игрушка получается. Сейчас вместо ноутбуков - нетбуки пошли (Asus на целероне дешевле 250$ и меньше вес (1 кг) и размер (экран 9 дюймов)). Нетбук это же еще и справочная, да и в интернет можно оперативно зайти если что. Питается от батарей. А приставок таких полно (ведущий производитель Pico - самый дорогой). Они же и вольтметры и анализаторы спектра. Некоторые дешевые модели идут с открытыми исходниками к софту на Паскале или С и можно менять под свой вкус интерфейс (меню, цвет лучей, автоматику). Ассортимент Pico
  • Я считаю что прибор должен быть прибором а не местом развлечений да и недостатков много у этих примочек.
  • Прибор пусть будет прибором, но с собой весь перечисленный парк приборов не потащишь, да и не только парк - отдельные приборы тоже, а некоторые просто не по карману. Так что такая переносная "лаборатория-пробник" кроме упомянутой приятности очень перспективна. Каждой ягоде свое время;)
  • Приборы от Pico - блин, действительно, дорогие. По параметрам не плохие. Я, например, от такой "примочки" особенных требований не предъявляю, мне бы она не помешала (ноут у меня почти всегда с собой), но не за такие цены как у Pico. Можно, конечно, на e-bay заглянуть...
  • на ebay
  • Всё равно универсальность - обратная сторона специализации. У меня была подобная штука для пробы. Не смотря на малый размер моего Maxmedia(фото в разделе Разговоры на свободную тему-Про Ивана Царевича и Жабу) мне не показалось использование подобного устройства удобным. Но на вкус и цвет, как говорится...
  • Давайте тогда, как крутые специалисты, будем мерять отдельными приборами ток, напряжение (отдельно постоянные и переменные), сопротивление. :)
  • Не надо передёргивать и доводить до абсурда. Размер любого мультиметра не соизмерим с занимаемым местом на столе предлагаемым. Добавим сюда возможное прожигание в ноуте паяльником чего-нибудь(хорошо, если не экрана). Все думают-я то уж аккуратен-ничего не прожгу, что это делают только другие. Стоимость этого+стоимость ноута(не у всех дома места есть достаточно) тянет на неплохой цифровой запоминающий осциллограф. Повторяю-я пробовал актакомовскую поделку и мне всё это не понравилось. А когда вы дорастёте до каких нибудь серьёзных задач, то, возможно вам просто прийдётся мерять величины своими специализированными приборами.
  • Шутка это не передергивание. Ладно, не буду шутить если вы так реагируете. Приведите лучше цифры. "Неплохой цифровой запоминающий осциллограф" стоит очень дорого (как автомобиль). Я имею ввиду не ворованный прибор. Все, что я писал я имел ввиду неворованное. Приведите цены с линками (хотябы на плохой цифровой осциллограф). Мне любопытно посмотреть будет на Ваши расчеты. У меня не сходится. Пока я согласен только с Вашим доводом о прожиге паяльником. Анализаторы спектра, с которыми я работал возили на тележках и стоили они 50-100,000$. Мне такой не купить никогда. Да и держать дома я его не захочу. Я смотрю со стороны частной практики, а не компании, которая может себе много чего позволить.
  • Смотря, конечно, что подразумевать под словом неплохой-тут всё зависит от задачи. И смотря какой автомобиль иметь в виду. Для меня неплохим решением оказался 25МГцх2канала UNIT-T 14000руб. 100МГЦх2канала уже 30000 руб. Цены лета прошлого года. Может эти приборы вас и не удовлетворят-не знаю ваших задач, но уверенно могу предсказать, что даже за 30000руб путное авто(которое будет больше ездить, чем ломаться) за эту сумму не приобрести. У актакома есть похожие аппараты-смотрел по рассылке ЭЛИКСа. Для исследований ИБП, MCU, узлов TV на CRT вполне очень даже. Если же ваши задачи выходят за этот круг-увы. ГКЧ стоили дорого очень, высокоточные приборы. Но такие надо пользовать на работе. Или, если организовано своё дело и оно успешно приносит прибыль- давить проклятую жабу-сколько бы прибор не стоил. Ибо он нужен для зарабатывания денег частным образом. Хотя здесь мы спорим о вкусах-купите себеэту приставку-опытом эксплуатации поделитесь.
  • Еще раз подчеркну, что эти приставки это не только осциллограф, а еще и куча других приборов, в том числе,как правило, анализатор спектра. Так что если считать деньги, то нужно складывать стоимость нескольких приборов, а не только осциллографа. О ценах,видимо, нам бесполезно дискуссировать - от страны сильно зависит. Автомобиль, который будет еще сносно ездить несколько лет я также могу купить за 1000$ и даже дешевле. Я свой 14-летний Бьюик, еще вполне на ходу, вынужден был отдать за 500$ 4 года назад так как больше он не стоил даже тогда. Машина это ширпотреб, нужный всем и поэтому стоит дешево, осциллограф и тп это профессиональный прибор - ограниченный спрос и поэтому стоит дорого.
  • Судя по параметрам - этот прибор, больше похож на радиолюбительский. Цена, правда, вполне профессиональная... Не надо также забывать про программное обеспечение. Некоторый опыт общения с подобными приборами, позволяет мне говорить о том, что, как правило, софт к ним тоже выполнен на любительском уровне. К сожалению... :(Дай Бог, чтобы конкретно этот прибор был исключением...
  • Вот эту примочку да приспособить к наладоннику.
  • А я наверное буду заказывать подобное устройство (еще по параметрам буду смотреть) на e-bay. Чисто для "домашней мастерской", при конструировании своих устройств и ничего больше. Буду потом отписываться...
  • Vadzz, почитай тут
  • http://www.masteram.biz/ru/Measuring...Oscilloscopes/ Здесь более солидная контора и соответственно дороже, чем упоминавшийся мной UNIT-T. За 1000$ можно купить именно СНОСНО ездящий автомобиль, а не нормально(т.е. замена только расходных материалов и жидкостей), хотя мера сносности у каждого своя и зависит от внешних воздействий(жизни) на систему управления(мозг). Анализатор спектра мне никогда не требовался, так как я занимался задачами, не связанными с необходимостью в такого рода приборе. Генератор качающейся частоты(в просторечьи "ачехометр") использовал 1 раз в жизни. Для каких целей, вы, slavar1, используете анализатор спектра?
  • LEAS, Вы же писали что "но уверенно могу предсказать, что даже за 30000руб путное авто(которое будет больше ездить, чем ломаться) за эту сумму не приобрести." Я на это и отвечал. Анализаторы спектра мы в основном использовали для снятия частотных характеристик пьезодатчиков, которых было сотни разновидностей в разных частотных диапазонах (от инфразвуковых частот до 15 kHz). Чаже в инфра. Для дома радиолюбителю он,конечно, может пригодиться рекдко - только для тех, кто постоянно клепает усилители и фильтры, но может быть полезен при борьбе с помехой.
  • В современном ЦыфЗапОсцил есть частотомер и курсорные измерения и пр. Именно это я и хотел подчеркнуть. Остальное всё есть. И я уже писал, что спор по этому поводу-спор о вкусе устриц, но я их уже ел! Мне не понравилось, вот Vaddz если приобретёт-поделится впечатлениями.
  • Здравствуйте! Я специализируюсь на ремонте автомобильных сигнализаций, работающих на частоте 433 мегагерца, мне нужно видеть кодировку и сам процесс модуляции, запоминать и воспроизводить эти сигналы. Наличие генератора, частотомера, вольтметра и осциллографа - обязательно для меня! Какой прибор вы порекомендуете? И у данного прибора хватило бы скорости обработки и т.д. Хотелось бы знать конкретную модель и цену!:eek:
  • Осциллограф-мультиметр-частотомер можеь заменить вот это.... С генератором посложнее будет, если Вы действительно хотите на 433МГц генерировать сложные сигналы...

Довольно часто в последнее время вместо того, чтобы сделать, к примеру, осциллограф из компьютера, многие предпочитают просто купить цифровой USB-осциллоскоп. Однако, пройдясь по рынку, можно понять, что на самом деле стоимость бюджетных осциллографов начинается приблизительно от 250 долларов. А более серьезное оборудование и вовсе имеет цену в несколько раз больше.

Именно для тех людей, которых не устраивает такая стоимость, актуальнее сделать осциллограф из компьютера, тем более что он позволяет решить большое количество задач.

Что нужно использовать?

Одним из наиболее оптимальных вариантов является программа Osci, которая имеет интерфейс, схожий со стандартным осциллографом: на экране есть стандартная сетка, при помощи которой вы можете самостоятельно измерить длительность, или же амплитуду.

Из недостатков данной утилиты можно отметить то, что она работает несколько нестабильно. В процессе своей работы программа может иногда зависать, а для того, чтобы потом ее сбросить, нужно будет использовать специализированный Task Manager. Однако все это компенсируется тем, что утилита имеет привычный интерфейс, является достаточно удобной в использовании, а также отличается достаточно большим количеством функций, которые позволяют сделать полноценный осциллограф из компьютера.

На заметку

Сразу стоит отметить, что в комплекте этих программ есть специализированный генератор низкой частоты, однако его использование крайне не рекомендуется, так как он пытается полностью самостоятельно регулировать работу драйвера аудиокарты, что может спровоцировать необратимое отключение звука. Если вы будете пробовать его применять, позаботьтесь о том, чтобы у вас была собственная точка восстановления или возможность сделать бэкап операционной системы. Наиболее оптимальным вариантом того, как сделать из компьютера осциллограф своими руками, является скачивание нормального генератора, который находится в «Дополнительных материалах».

"Авангард"

"Авангард" - это отечественная утилита, которая не имеет стандартной и привычной всем измерительной сетки, а также отличается слишком большим экраном для снятия скриншотов, но при этом предоставляет возможность использовать встроенный вольтметр амплитудных значений, а также частотомер. Это позволяет частично компенсировать те минусы, которые были указаны выше.

Сделав такой осциллограф из компьютера своими руками, вы можете столкнуться со следующим: на малых уровнях сигнала как частотомер, так и вольтметр могут сильно искажать результаты, однако для начинающих радиолюбителей, которые не привыкли воспринимать эпюры в вольтах или же миллисекундах на деление, данная утилита будет вполне приемлемой. Другой же ее полезной функцией является то, что можно осуществлять полностью независимую калибровку двух уже имеющихся шкал встроенного вольтметра.

Как это будет использоваться?

Так как входные цепи аудиокарты имеют специализированный разделительный конденсатор, компьютер в качестве осциллографа может использоваться исключительно с закрытым входом. То есть на экране будет наблюдаться только переменная составляющая сигнала, однако, имея некоторую сноровку, при помощи этих утилит можно будет также провести измерение уровня постоянной составляющей. Это является довольно актуальным в том случае, если, например, время отсчета мультиметра не дает возможности зафиксировать определенное амплитудное значение напряжения на конденсаторе, который заряжается через крупный резистор.

Нижний предел напряжения ограничивается уровнем шума и фона и составляет приблизительно 1 мВ. Верхний предел имеет ограничения только по параметрам делителя и может достигать даже нескольких сотен вольт. Частотный диапазон непосредственно ограничивается возможностями самой аудиокарты и для бюджетных устройств составляет примерно от 0.1 Гц до 20 кГц.

Конечно, в данном случае рассматривается относительно примитивное устройство. Но если у вас нет возможности, к примеру, использовать USB-осциллограф (приставка к компьютеру), то в таком случае его применение вполне оптимально.

Такой прибор может помочь вам в ремонте различной аудиоаппаратуры, а также может быть использован исключительно в учебных целях, особенно если дополнить его виртуальным генератором НЧ. Помимо этого, программа-осциллограф для компьютера позволит вам сохранить эпюру для иллюстрации определенного материала или же с целью размещения в Интернете.

Электрическая схема

Если вам нужна приставка к компьютеру (осциллограф), то сделать его будет уже несколько сложнее. На данный момент в интернете можно найти достаточно большое количество различных схем таких устройств, и для постройки, к примеру, двухканального осциллографа вам нужно будет их продублировать. Использование второго канала часто является актуальным в том случае, если нужно сравнивать два сигнала или же приставка к компьютеру (осциллограф) будет использоваться также с подключением внешней синхронизации.

В преимущественном большинстве случаев схемы являются предельно простыми, однако таким образом вы сможете обеспечить самостоятельно довольно широкий диапазон доступных для измерения напряжений, используя при этом минимальное количество радиодеталей. При этом аттенюатор, который строится по классической схеме, потребовал бы от вас использования специализированных высокомегаомных резисторов, а его входное сопротивление постоянно изменялось бы в случае переключения диапазона. По этой причине вы бы испытывали определенные ограничения в использовании стандартных осциллографических кабелей, которые рассчитываются на входной импеданс не более 1 мОм.

Обеспечиваем безопасность

Для того чтобы линейный вход аудиокарты был защищен от возможности случайного попадания высокого напряжения, параллельно можно установить специализированные стабилитроны.

При помощи резисторов вы сможете ограничить ток стабилитронов. К примеру, если вы собираетесь использовать ваш компьютер-осциллограф (генератор) для измерения напряжения около 1000 Вольт, то в таком случае в качестве резистора можно будет задействовать два одноваттных или же один двухваттный резистор. Они между собой различаются не только по своей мощности, но еще и по тому, какое напряжение в них является предельно допустимым. Также стоит отметить тот факт, что в этом случае вам потребуется и конденсатор, максимально допустимое значение для которого составляет 1000 Вольт.

Внимание!

Нередко нужно изначально посмотреть переменную составляющую сравнительно небольшой амплитуды, которая при этом может отличаться довольно большой постоянной составляющей. В таком случае на экране осциллографа с закрытым входом может быть такая ситуация, когда вы не увидите ничего, кроме переменной составляющей напряжения.

Выбираем резисторы делителя напряжения

По той причине, что достаточно часто современные радиолюбители испытывают определенные трудности с тем, чтобы найти прецизионные резисторы, нередко случается так, что приходится использовать стандартные устройства широкого применения, которые нужно будет подогнать с максимальной точностью, так как сделать осциллограф из компьютера в противном случае не выйдет.

Высокоточные резисторы в преимущественном большинстве случаев стоят в несколько раз дороже по сравнению с обычными. При этом на сегодняшний день их чаще всего продают сразу по 100 штук, в связи с чем их приобретение не всегда можно назвать целесообразным.

Подстроечные

В данном случае каждое плечо делителя составляется из двух резисторов, один из которых является постоянным, в то время как второй - подстроечный. Недостатком такого варианта является его громоздкость, однако точность ограничивается только тем, какие доступные параметры имеет измерительное устройство.

Подбираем резисторы

Второй вариант сделать компьютер в роли осциллографа - это подобрать пары резисторов. Точность в данном случае обеспечивается за счет того, что используются пары резисторов из двух комплектов с достаточно большим разбросом. Здесь важно изначально сделать тщательное измерение всех устройств, а затем выбрать пары, сумма сопротивлений которых является наиболее соответствующей выполняемой вами схеме.

Стоит отметить, что именно этот способ использовался в промышленных масштабах для того, чтобы подгонять резисторы делителя для легендарного устройства «ТЛ-4». Перед тем как сделать осциллограф из компьютера своими руками, необходимо изучить возможные недостатки такого устройства. В первую очередь можно отметить трудоемкость, а также необходимость применения большого количества резисторов. Ведь чем более длинным будет список используемых вами устройств, тем более высокой будет конечная точность проводимых измерений.

Подгонка резисторов

Стоит отметить, что подгонка резисторов посредством удаления части пленки на сегодняшний день иногда используется даже в современной промышленности, то есть таким способом часто делается осциллограф из компьютера (USB или какой-нибудь другой).

Однако при этом сразу стоит отметить, что если вы собираетесь подгонять высокоомные резисторы, то в таком случае резистивная пленка ни в коем случае не должна быть прорезана насквозь. Все дело в том, что в таких устройствах она наносится на цилиндрическую поверхность в форме спирали, поэтому производить подпил нужно предельно осторожно, чтобы исключить возможность разрыва цепи.

Если вы делаете осциллограф из компьютера своими руками, то для того, чтобы провести подгонку резисторов в домашних условиях, нужно просто использовать самую простую наждачную бумагу «нулевку».

  1. Первоначально у того резистора, у которого присутствует заведомо меньшее сопротивление, нужно удалить аккуратно защитный слой краски.
  2. После этого следует подпаять резистор к концам, которые и будут подклеиваться к мультиметру. Путем выполнения осторожных движений наждачной бумагой показатели сопротивления резистора доводятся до нормального значения.
  3. Теперь, когда резистор окончательно подогнан, место пропила нужно покрыть дополнительным слоем специализированного защитного лака или же клея.

На данный момент такой способ можно назвать наиболее простым и быстрым, но при этом он позволяет получить неплохие результаты, что и делает его оптимальным для проведения работ в домашних условиях.

Что нужно учитывать?

Есть несколько правил, которые нужно соблюдать в любом случае, если вы собираетесь проводить подобные работы:

  • Используемый вами компьютер в обязательном порядке должен быть надежно заземлен.
  • Ни в какой ситуации вы не должны совать в розетку земляной провод. Он соединяется через специализированный корпус разъема линейного входа с корпусом системного блока. В этом случае, вне зависимости от того, попадаете вы в ноль или же в фазу, у вас не произойдет короткого замыкания.

Другими словами, в розетку может втыкаться исключительно провод, соединяющийся с резистором, который располагается в схеме адаптера и имеет номинал 1 мегом. Если же вы пытаетесь включить в сеть кабель, который соединяется с корпусом, то практически во всех случаях это приводит к самым неприятным последствиям.

Если вами будет использоваться осциллограф «Авангард», то в таком случае в процессе калибровки вам следует выбрать шкалу вольтметра «12.5». После того как вы увидите напряжение сети на вашем экране, в окошко калибровки нужно буде ввести значение 311. При этом стоит отметить, что вольтметр после этого должен показать вам результат в виде 311 мВ или же приближенное к нему.

Помимо всего прочего, не стоит забывать, что форма напряжения в современных электросетях отличается от синусоидальной, так как на сегодняшний день электроприборы выпускаются с импульсными блоками питания. Именно по этой причине вам нужно будет ориентироваться не просто на видимую кривую, но и на ее синусоидальное продолжение.

Рассказать в:
ПРОДОЛЖЕНИЕ:Подбор резисторов. Другой способ – подбор пар резисторов. Точность обеспечивается за счёт подбора пар резисторов из двух комплектов резисторов с большим разбросом. Сначала все резисторы промеряются, а затем подбираются пары, сумма сопротивлений которых наиболее соответствует схеме.
Именно этим способом, в промышленных масштабах, подгонялись резисторы делителя для легендарного тестера «ТЛ-4».
Недостаток метода – трудоёмкость и потребность в большом количестве резисторов.
Чем длиннее список резисторов, тем выше точность подбора.
Подгонка резисторов при помощи наждачной бумаги. Подгонкой резисторов, путём удаления части резистивной плёнки, не брезгует даже промышленность.
Однако при подгонке высокоомных резисторов не допускается прорезать резистивную плёнку насквозь. У высокоомных плёночных резисторов МЛТ, плёнка нанесена на цилиндрическую поверхность в виде спирали. Подпиливать такие резисторы нужно крайне осторожно, чтобы не разорвать цепь.
Точную подгонку резисторов в любительских условиях можно осуществить при помощи самой мелкой наждачной бумаги – «нулёвки». Сначала с резистора МЛТ, у которого заведомо меньшее сопротивление, при помощи скальпеля аккуратно удаляется защитный слой краски. Затем резистор подпаивается к «концам», которые подключаются к мультиметру. Осторожными движениями шкурки-«нулёвки» сопротивление резистора доводится до нормы. Когда резистор подогнан, место пропила покрывается слоем защитного лака или клея.
На мой взгляд, это самый быстрый и простой способ, который, тем не менее, даёт очень хорошие результаты.Конструкция и детали. Элементы схемы адаптера размещены в прямоугольном дюралюминиевом корпусе.
Переключение коэффициента деления аттенюатора осуществляется тумблером со средним положением. В качестве входного гнезда применён стандартный разъём СР-50, что позволяет использовать стандартные кабели и щупы. Вместо него можно применить обычное аудио гнездо типа Джек (Jack) 3,5мм.
Выходной разъём – стандартное аудио гнездо 3,5мм. Адаптер соединяется с линейным входом аудиокарты при помощи кабеля с двумя Джеками 3,5мм на концах. Сборка произведена методом навесного монтажа Для использования осциллографа понадобится ещё кабель со щупом на конце.
Как его изготовить подробно будет описано в другом мануале в ближайшее время под названием "Как изготовить кабель-щуп для низкочастотного виртуального осциллографа? "Как откалибровать виртуальный осциллограф? Чтобы произвести калибровку осциллографа, нужно иметь хоть какой-нибудь измерительный прибор. Подойдёт любой стрелочный тестер или цифровой мультиметр, которому Вы доверяете.
В связи с тем, что у некоторых тестеров слишком высокая погрешность при измерении переменного напряжения до 1-го Вольта, калибровку производим при максимально возможном, но неограниченном по амплитуде, напряжении.

Перед калибровкой производим следующие настройки.

Отключаем эквалайзер аудиокарты.
“Уровень линейного выхода”, “Уровень WAVE”, “Уровень линейного входа” и “Уровень записи” устанавливаем в положение максимального усиления. Это обеспечит повторяемость результата при дальнейших измерениях.
Сбросив на всякий случай настройки генератора командой Command > Get Generator Default Setting, устанавливаем «Gain» (уровень) в 0db.
Выбираем частоту генератора 50Hz переключателем «Frequency Presets» (предустановки), так как все любительские приборы для измерения переменного напряжения умеют работать на этой частоте, да и наш адаптер пока не может корректно работать на более высоких частотах.Переключаем вход адаптера в режим 1:1.
Глядя на экран осциллографа, подбираем при помощи ручки генератора «Плавно» (Trim) максимальный неограниченный уровень сигнала.
Сигнал может ограничиваться, как на входе аудиокарты, так и на её выходе, при этом точность калибровки может существенно снизиться. В «AudioTester-е» даже имеется специальный индикатор перегрузки, который выделен на скриншоте красным цветом.
Замеряем тестером напряжение на выходе генератора и рассчитываем величину соответствующего ему амплитудного значения.
Пример .
Показание вольтметра = 1,43 Вольта (действующее).
Получаем амплитудное значение.
1,432*√2 = 2,025 (Вольт)
Команда “Options > Calibrate” вызывает окно калибровки “AudioTester-а”.
И хотя возле окошка ввода указана размерность в «mVrms», что по идее должно означать среднеквадратичное значение, в реальности, в осциллографе «oszi v2.0c» из комплекта «AudioTester-а», вводимые значения соответствуют… непонятно чему. Что, правда, вовсе не мешает точно откалибровать прибор.
Путём ввода значений с небольшим шагом можно точно подогнать размер изображения синусоиды под вычисленное выше амплитудное значение.
На картинке видно, что амплитуда сигнала уложилась чуть больше, чем в два деления, что соответствует 2,02 Вольта.
Точность отображения амплитуды сигналов, полученных с входов 1:20 и 1:100 будет зависеть от точности подбора соответствующих резисторов делителя.
При калибровке осциллографа «Авангард», полученные при измерении тестером значения также нужно умножить на √2, так как и вольтметр, и калибратор «Авангард-а» рассчитан на амплитудные значения.
Вносим полученное значение в окошко калибровки в милливольтах – 2025 и нажимаем Enter.
Чтобы откалибровать второй диапазон осциллографа «Авангард», который отмечен, как «250», нужно сначала рассчитать реальный коэффициент деления, сравнив показания встроенного вольтметра в двух диапазонах делителя: 1:1 и 1:20. Вольтметр осциллографа, при этом должен находиться в положении «12,5»

Пример.
122 / 2323 = 19,3
Затем нужно подправить файл «calibr», который можно открыть в блокноте (Notepad-е). Слева файл до правки, а справа – после.
Файл «calibr» находится в той же самой директории, где расположена текущая копия программы.
В восьмую строчку вносим реальный коэффициент деления, соответствующий делителю первого (левого) канала.
Если вы построили двухканальный адаптер, то в девятую строчку вносим поправку для второго (правого) канала.Как выровнять амплитудно-частотную характеристику адаптера? Линейный вход аудиокарты, да и сами цепи адаптера обладают некоторой входной ёмкостью. Реактивное сопротивление этой ёмкости изменяет коэффициент деления делителя на высоких частотах. Чтобы выровнять частотную характеристику адаптера в диапазоне 1:1, нужно подобрать ёмкость конденсатора C1 так, чтобы амплитуда сигнала на частоте 50 Гц была равна амплитуде сигнала частотой 18-20 кГц. Резисторы R2 и R3 снижают влияние входной ёмкости и создают подъём частотной характеристики в области высоких частот. Компенсировать этот подъём можно путём подбора конденсаторов С2 и С3 в соответствующих диапазонах 1:20 и 1:100.
У подобрал следующие ёмкости: C1 – 39pF, C2 – 10nF, C3 – 0,1nF. Теперь, когда канал Y верикального отклонения осциллографа откалиброван и линеаризован, можно увидеть, как выглядят те или иные периодические, и не только, сигналы. В «AudioTester-e» есть «ждущая синхронизация развёртки».Что делать, если нет тестера? Или опасные опыты. Можно ли использовать для калибровки осветительную сеть?

Так как любой уважающий себя радиолюбитель, несмотря на все предупреждения, первым делом пытается залезть своим детищем в розетку, я счёл необходимым рассказать об этом опасном занятии подробнее.
По ГОСТу напряжение сети не должно выходить за пределы 220 Вольт – 10% +5%, хотя, в реальной жизни, это условие соблюдается не так часто, как хотелось бы. Ошибки измерений в процессе подгонке резисторов и замерах импеданса также могут привнести высокие погрешности при данном способе калибровки.
Если Вы собрали прецизионный делитель, например, на высокоточных резисторах, и если известно, что в вашем доме напряжение в осветительной сети поддерживается с достаточной точностью, то её можно использовать для грубой калибровки осциллографа.
Но, есть очень много НО, из-за которых, я Вам категорически не рекомендую это делать. Первое и наиболее важное «НО», это сам факт того, что Вы читаете эту статью. Тот, кто на ты с электричеством, вряд ли стал бы тратить на это время. Но, если и это не аргумент… Самое главное!
1. Компьютер должен быть надёжно заземлён!!!
2. Ни под каким предлогом не суйте в розетку «земляной» провод! Это тот провод, который соединён через корпус разъёма линейного входа с корпусом системного блока!!! (Другие названия этого провода: масса, корпус, общий, экран и т.д.) Тогда, вне зависимости от того, попадёте Вы в фазу или в ноль, не произойдёт короткое замыкание.
Другими словами, в розетку можно втыкать только провод, который соединён с резистором R1 номиналом 1 мегом, расположенном в схеме адаптера!!!
Если же Вы попытаетесь воткнуть в сеть провод, соединенный с корпусом, то в 50% случаев это приведёт к самым печальным последствиям.
Так как максимальная неограниченная амплитуда на линейном входе около 250мВ, то в положении делителя 1:100 можно будет увидеть амплитуду величиной примерно в 50… 250 Вольт (в зависимости от входного импеданса). Поэтому, для измерения напряжения сети, адаптер должен быть оборудован делителем 1: 1000.
Делитель 1:1000 можно рассчитать по аналогии с делителем 1:100.
Пример расчёта делителя 1:1000.
Верхнее плечо делителя = 1007кОм.
Входной импеданс = 50кОм.
Коэффициента деления по входу 1:1 = 20,14.
Определяем общий коэффициент деления для входа 1:1000.
20,14*1000 = 20140 (раз)
Рассчитываем величину резистора для делителя.
1007*50 / 50*20140 –50 –1007 ≈ 50 (Ом) ПРОДОЛЖЕНИЕ СЛЕДУЕТ:
Раздел: [Измерительная техника]
Сохрани статью в:

Тясячи схем в категориях:
-> Прочее
-> Измерительная техника
-> Приборы
-> Схемыэлектрооборудования
->
-> Теоретические материалы
-> Справочные материалы
-> Устройства на микроконтроллерах
-> Зарядные устройства (для батареек)
-> Зарядные устройства (для авто)
-> Преобразователи напряжения (инверторы)
-> Все для кулера (Вентилятора)
-> Радиомикрофоны, жучки
-> Металоискатели
-> Регуляторы мощности
-> Охрана (Сигнализация)
-> Управление освещением
-> Таймеры (влажность, давление)
-> Трансиверы и радиостанции
-> Конструкции для дома
-> Конструкции простой сложности
-> Конкурс на лучшую конструкцию на микроконтроллерах
-> Конструкции средней сложности
-> Стабилизаторы
-> Усилители мощности низкой частоты (на транзисторах)
-> Блоки питания (импульсные)
-> Усилители мощности высокой частоты
-> Приспособления для пайки и конструирования плат
-> Термометры
-> Борт. сеть
-> Измерительные приборы (тахометр, вольтметр итд)
-> Железо
-> Паяльники ипаяльные станции
-> Радиопередатчики
->

Осциллограф - это портативное устройство, которое создано для тестирования микросхем. Дополнительно многие модели подходят для промышленного контроля и могут использоваться с целью проведения различных измерений. Сделать осциллограф своими руками нельзя без стабилитрона, который является основным его элементом. Устанавливается данная деталь в прибор различной мощности.

Дополнительно приборы в зависимости от модификации могут включать в себя конденсаторы, резисторы и диоды. К основным параметрам модели можно отнести количество каналов. В зависимости от этого показателя меняется предельная полоса пропускания. Также при сборке осциллографа следует учитывать частоту дискретизации и глубину памяти. Для того чтобы делать анализ полученных данных, устройство подключается к персональному компьютеру.

Схема простого осциллографа

Схема простого осциллографа включает в себя стабилитрон на 5 В. Пропускная способность его зависит от типов резисторов, которые устанавливаются на микросхему. Для увеличения амплитуды колебаний используются конденсаторы. Изготовить щуп для осциллографа своими руками можно из любого проводника. При этом порт подбирается в магазине отдельно. Резисторы первой группы минимум сопротивление в цепи должны выдерживать на уровне 2 Ом. При этом элементы второй группы должны быть более мощными. Также следует отметить наличие на схеме диодов. В некоторых случаях они выстраиваются в мосты.

Одноканальная модель

Сделать одноканальный цифровой осциллограф своими руками можно только с применением стабилитрона на 5 В. При этом более мощные модификации в данном случае недопустимы. Связано это с тем, что повышенное предельное напряжение в цепи приводит к увеличению частоты дискретизации. В итоге резисторы в устройстве не справляются. Конденсаторы для системы побираются только емкостного типа.

Минимум резистор сопротивление должен держать на уровне 4 Ом. Если рассматривать элементы второй группы, то параметр пропускания в данном случае должен составлять 10 Гц. Для того чтобы его повысить до нужного уровня, используются различного типа регуляторы. Некоторые специалисты для одноканальных осциллографов советуют применять ортогональные резисторы.

В данном случае следует отметить, что показатель частоты дискретизации они поднимают довольно быстро. Однако негативные моменты в такой ситуации все же присутствуют, и их следует учитывать. В первую очередь важно отметить резкое возбуждение колебаний. Как следствие, растет асимметричность сигналов. Дополнительно существуют проблемы с чувствительностью устройства. В конечном счете, точность показаний может быть не самой лучшей.

Двухканальные устройства

Сделать двухканальный осциллограф своими руками (схема показана ниже) довольно сложно. В первую очередь следует отметить, что стабилитроны в данном случае подходят как на 5 В, так и на 10 В. При этом конденсаторы для системы необходимо использовать только закрытого типа.

За счет этого полоса пропускания устройства способна возрасти до 9 Гц. Резисторы для модели, как правило, применяются ортогонального типа. В данном случае они стабилизируют процесс передачи сигнала. Для выполнения функций сложения микросхемы подбираются в основном серии ММК20. Сделать делитель для осциллографа своими руками можно из обычного модулятора. Это не особенно сложно.

Многоканальные модификации

Для того чтобы собрать USB-осциллограф своими руками (схема показана ниже), стабилитрон потребуется довольно мощный. Проблема в данном случае заключается в повышении пропускной способности цепи. В некоторых ситуациях работа резисторов может нарушаться из-за смены предельной частоты. Для того чтобы решить эту проблему, многие используют вспомогательные делители. Указанные устройства во многом помогают повысить порог предельного напряжения.

Сделать делитель можно при помощи модулятора. Конденсаторы в системе необходимо устанавливать только возле стабилитрона. Для повышения полосы пропускания используются аналоговые резисторы. Параметр отрицательного сопротивления в среднем колеблется в районе 3 Ом. Диапазон по блокированию зависит исключительно от мощности стабилитрона. Если предельная частота резко падает во время включения устройства, то конденсаторы необходимо заменить на более мощные. Некоторые специалисты в данном случае советуют устанавливать диодные мосты. Однако важно понимать, что чувствительность системы в этой ситуации значительно ухудшается.

Дополнительно необходимо сделать щуп для устройства. Для того чтобы осциллограф не конфликтовал с персональным компьютером, целесообразнее микросхему использовать типа ММР20. Сделать щуп можно из любого проводника. В конечном итоге человеку останется только прибрести порт для него. Затем при помощи паяльника вышеуказанные элементы можно соединить.

Сборка устройства на 5 В

На 5 В осциллограф-приставка своими руками делается только с применением микросхемы типа ММР20. Подходит она как для обычных, так и мощных резисторов. Максимум сопротивление в цепи должно составлять 7 Ом. При этом полоса пропускания зависит от скорости передачи сигнала. Делители для устройств могут применяться самых разных видов. На сегодняшний день более распространенными принято считать статические аналоги. Полоса пропускания в такой ситуации будет находиться на отметке 5 Гц. Чтобы ее повысить, необходимо использовать тетроды.

Подбираются они в магазине, исходя из параметра предельной частоты. Для увеличения амплитуды обратного напряжения многие специалисты советуют устанавливать только саморегулируемые резисторы. При этом скорость передачи сигнала будет довольно высокой. В конце работы необходимо сделать щуп для подключения цепи к персональному компьютеру.

Осциллографы на 10 В

Изготавливается осциллограф своими руками со стабилитроном, а также резисторами закрытого типа. Если рассматривать параметры устройства, то показатель вертикальной чувствительности должен находиться на уровне 2 мВ. Дополнительно следует рассчитать полосу пропускания. Для этого берется емкость конденсаторов и соотносится с предельным сопротивлением системы. Резисторы для устройства больше всего подходят полевого типа. Чтобы минимизировать частоту дискретизации, многие специалисты советуют применять только диоды на 2 В. За счет этого можно добиться большой скорости передачи сигнала. Для того чтобы функция слежения выполнялась довольно быстро, микросхемы устанавливаются типа ММР20.

Если запланировать режимы хранения и воспроизведения, то необходимо воспользоваться другим типом. Курсорные измерения в данном случае будут недоступны. Основной проблемой этих осциллографов можно считать резкое падение предельной частоты. Связано это, как правило, с быстрой разверткой данных. Решить поставленную задачу можно только с применением высококачественного делителя. При этом многие также полагаются на стабилитрон. Сделать делитель можно при помощи обычного модулятора.

Как сделать модель на 15 В?

Собирается осциллограф своими руками при помощи линейных резисторов. Предельное сопротивление они способны выдерживать на уровне 5 Мм. За счет этого на стабилитрон не оказывается большого давления. Дополнительно следует позаботиться о выборе конденсаторов для устройства. С этой целью необходимо сделать замеры порогового напряжения. Специалисты для этого используют тестер.

Если применять для осциллографа настроечные резисторы, то можно столкнуться с повышенной вертикальной чувствительностью. Таким образом, полученные данные вследствие тестирования могут быть некорректными. Учитывая все вышесказанное, необходимо применять только линейные аналоги. Дополнительно следует позаботиться об установке порта, который подсоединяется в микросхеме через щуп. Делитель в данном случае целесообразнее устанавливать через шину. Чтобы амплитуда колебаний не была слишком большой, многие советуют использовать диоды вакуумного типа.

Использование резисторов серии ППР1

Изготовить USB-осциллограф своими руками с данными резисторами - задача непростая. В этом случае необходимо в первую очередь оценить емкость конденсаторов. Для того чтобы предельное напряжение не превышало 3 В, важно использовать не более двух диодов. Дополнительно следует помнить о параметре номинальной частоты. В среднем этот показатель составляет 3 Гц. Ортогональные резисторы для такого осциллографа не подходят однозначно. Построечные изменения можно проводить только при помощи делителя. В конце работы надо заняться непосредственно установкой порта.

Модели с резисторами ППР3

Сделать USB-осциллограф своими руками можно с использованием только сеточных конденсаторов. Особенность их заключается том, что уровень отрицательного сопротивления в цепи может достигать 4 Ом. Микросхемы для таких осциллографов подходят самые разнообразные. Если взять стандартный вариант типа ММР20, то необходимо конденсаторов в системе предусмотреть как минимум три.

Дополнительно важно обратить внимание на плотность диодов. В некоторых случаях от этого зависит показатель полосы пропускания. Для стабилизации процесса деления специалисты советуют тщательно проверять проводимость резисторов перед включением устройства. В последнюю очередь подсоединяется непосредственно регулятор к системе.

Устройства с подавлением колебаний

Осциллографы с блоком подавления колебаний используются в наше время довольно редко. Подходят они больше всего именно для тестирования электроприборов. Дополнительно следует отметить их высокую вертикальную чувствительность. В данном случае параметр предельной частоты в цепи не должен превышать 4 Гц. За счет этого стабилитрон во время работы сильно не перегревается.

Делается осциллограф своими руками с применением микросхемы сеточного типа. При этом необходимо в самом начале определиться с типами диодов. Многие в данной ситуации советуют применять только аналоговые типы. Однако в этом случае скорость передачи сигнала может значительно снизиться.

Осциллограф является самым важным инструментом для наблюдения и измерения параметров электронных схем. Это устройство, изображения которого представляют собой графическое отображение напряжения (по вертикальной оси) в зависимости от времени (по горизонтальной оси).

Функциональные особенности

Основная функция осциллографа заключается в предоставлении графика напряжения с течением времени. Обычно ось Y представляет собой напряжение, а ось X – время. Это бывает полезно:

  • для измерения таких параметров, как тактовые частоты, рабочие циклы сигналов с широтно-импульсной модуляцией, задержкой распространения или временем нарастания и спада сигналов, получаемых с датчиков;
  • для предупреждения пользователя о наличии сбоев в системе или перехватчиках;
  • для исследования (наблюдения, записи, измерения) амплитудных и временных параметров.

Для информации. Диапазоны измерения огромны. К примеру, на относительно дешевом осциллографе можно регулировать от 5 мВ/см до 5 В/см (по вертикальной шкале) и от 2 мкс/см до 20 с/см (по горизонтали).

Другие функции устройства:

  1. Показывать и вычислять частоту и амплитуду осциллирующего сигнала;
  2. Показывать напряжение и время. Эта функция наиболее часто используется в экспериментальных лабораториях;
  3. Помогать устранять любые неисправные компоненты проекта, просмотрев ожидаемый результат;
  4. Показывать изменение переменного или постоянного напряжения.

Для лучшего понимания функций устройства необходимо ознакомиться с используемыми терминами и с тем, что они собой представляют:

  1. Полоса пропускания указывает диапазон частот, который может точно измерить устройство;
  2. Точность усиления показывает, насколько точно вертикальная система ослабляет или усиливает сигнал. Величина указывается в процентной ошибке;
  3. Временная база или горизонтальная точность указывает, насколько точно горизонтальная система отображает синхронизацию сигнала. Это отображается как процентная погрешность;
  4. Время нарастания – еще один способ описания полезного частотного диапазона прибора. Время нарастания необходимо учитывать при измерении импульсов и ступеней. Прибор не может точно отображать импульсы со временем нарастания быстрее, чем указанное время нарастания осциллографа;
  5. Вертикальная чувствительность показывает, насколько вертикальный усилитель может усилить слабый сигнал. Вертикальная чувствительность обычно указывается в мВ/дел (милливольтах на деление). Наименьшее напряжение, которое может обнаружить осциллограф общего назначения, обычно составляет около 1 мВ на вертикальное деление экрана;
  6. Скорость развертки – этот параметр указывает на то, как быстро трассировка может проходить по экрану. Это обычно указывается в нс/дел (наносекундах за деление);
  7. Частота дискретизации в цифровом осциллографе показывает, сколько выборок в секунду может получить конвертер от А до D. Максимальная частота дискретизации обычно задается в Мп/с (мегапикселях в секунду). Чем быстрее осциллограф может пробовать, тем точнее он может представлять тонкие детали сигнала. Минимальная частота дискретизации также может быть важной, если нужно смотреть медленно меняющиеся сигналы в течение длительных периодов времени. Как правило, частота дискретизации меняется с изменениями, внесенными в элемент управления, чтобы поддерживать постоянное количество точек формы сигнала в записи осциллограммы;
  8. Длина записи цифрового осциллографа показывает количество осциллограмм, которые устройство может получить за каждую запись. Максимальная длина записи зависит от ее памяти. Существует возможность получения подробного изображения сигнала в течение короткого периода времени или менее детального изображения в течение более длительного периода времени.

Преобразование компьютера в осциллограф

Существует два способа преобразования:

  1. Первый – заключается в подключении к вводу/выводу платы микроконтроллера PIC цепи. Комплект с соответствующей программой позволит читать цифровые или аналоговые сигналы и возвращать результаты через последовательный порт компьютера. Также можно создавать ШИМ-сигналы, звуковые сигналы, импульсы и управлять ими с компьютера;
  2. Второй способ – беззатратный, в каждом ПК имеется встроенные АЦП и звуковая карта. Используя их, можно компьютер переделать в осциллограф с помощью установки ПО и спайкой входного делителя. Подобные программы можно найти легко в интернете. Одна из них – Digital Oscilloscope V3.0.

Программа «Компьютер – осциллограф»

После запуска программы на экране появится изображение, внешне очень похожее на обычный осциллограф. Для подачи сигнала используется линейный вход звуковой карты. Подача на вход сигнала возможна лишь с ограничением – не более 0,5-1 В, поэтому необходимо спаять входной делитель по простой схеме, изображенной на картинке.

Важное достоинство программы – виртуальный осциллограф запоминающий. Работу можно приостановить, оставшуюся на экране осциллограмму можно сохранить в памяти компьютера или распечатать. На передней панели имеется множество элементов управления, которые позволяют увеличить или уменьшить единицы времени и напряжения.

Применение в быту

Онлайн осциллограф является важным инструментом для любого инженера-электрика. Его можно использовать как счетчик коммунальных услуг. Например, он позволяет заметить, что потребление электроэнергии выше в зимние месяцы, чем летние месяцы, или, что потребление электроэнергии уменьшилось после покупки более эффективного холодильника, или то, что потребление электроэнергии увеличивается, когда включить микроволновую печь. Чаще всего более важно анализировать эти шаблоны в сигналах, чем сами показания напряжения.

Интеллектуальный измеритель отображает сигнал в реальном времени. Из его графиков можно видеть, что используется меньше электричества в будние дни, когда домочадцы находятся не дома, а в школе или на работе. Это информация, которую по-другому не получить.

 

 

Это интересно: